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[1] Turbulent entrainment‐mixing mechanisms are investigated by applying a combined
approach to the aircraft measurements of three drizzling and two nondrizzling
stratocumulus clouds collected over the U.S. Department of Energy’s Atmospheric
Radiation Measurement Southern Great Plains site during the March 2000 cloud
Intensive Observation Period. Microphysical analysis shows that the inhomogeneous
entrainment‐mixing process occurs much more frequently than the homogeneous
counterpart, and most cases of the inhomogeneous entrainment‐mixing process are close
to the extreme scenario, having drastically varying cloud droplet concentration but
roughly constant volume‐mean radius. It is also found that the inhomogeneous
entrainment‐mixing process can occur both near the cloud top and in the middle level of a
cloud, and in both the nondrizzling clouds and nondrizzling legs in the drizzling clouds.
A new dimensionless number, the scale number, is introduced as a dynamical measure for
different entrainment‐mixing processes, with a larger scale number corresponding to a
higher degree of homogeneous entrainment mixing. Further empirical analysis shows that
the scale number that separates the homogeneous from the inhomogeneous entrainment‐
mixing process is around 50, and most legs have smaller scale numbers. Thermodynamic
analysis shows that sampling average of filament structures finer than the instrumental
spatial resolution also contributes to the dominance of inhomogeneous entrainment‐mixing
mechanism. The combined microphysical‐dynamical‐thermodynamic analysis sheds new
light on developing parameterization of entrainment‐mixing processes and their
microphysical and radiative effects in large‐scale models.

Citation: Lu, C., Y. Liu, and S. Niu (2011), Examination of turbulent entrainment‐mixing mechanisms using a combined
approach, J. Geophys. Res., 116, D20207, doi:10.1029/2011JD015944.

1. Introduction

[2] Turbulent entrainment‐mixing processes have been
regarded as likely candidates for resolving some outstanding
problems in cloud physics (e.g., spectral broadening and
warm‐rain initiation) [Stommel, 1947; Liu and Hallett, 1998;
Su et al., 1998; Yum and Hudson, 2001, 2005; Liu et al.,
2002a; Andrejczuk et al., 2004; Lasher‐Trapp et al., 2005].
The need for improving understanding of entrainment‐
mixing processes is further reinforced by growing interests
in climate‐related research and the recognition of the critical
role of turbulent entrainment mixing in determining cloud
microphysical and radiative properties. Clouds have been
thought to be a major source of the uncertainty in climate
sensitivity estimates in global climate models (GCMs) because
most cloud‐related processes occur at subgrid scales of typical

GCMs and need to be parameterized [Cess et al., 1989;
Colman, 2003; Bony and Dufresne, 2005; Stephens, 2005].
One such subgrid process is the turbulent entrainment‐mixing
process [e.g., von Salzen and McFarlane, 2002].
[3] Turbulent entrainment‐mixing processes have been

often studiedwith the so‐called homogeneous/inhomogeneous
model, but our understanding is still far from complete. Some
observations suggested that the entrainment‐mixing process
was close to homogeneous [e.g., Jensen et al., 1985; Burnet
and Brenguier, 2007; Lehmann et al., 2009]; others pointed
to the inhomogeneous scenario [Pawlowska et al., 2000;
Burnet and Brenguier, 2007;Haman et al., 2007;Gerber et al.,
2008; Lehmann et al., 2009]. However, Burnet and Brenguier
[2007] pointed out that the entrainment‐mixing type is size
dependent: A homogeneous entrainment‐mixing process
may appear to be an inhomogeneous scenario because of
spatial averaging of measurements. Lehmann et al. [2009]
also pointed out that it is unclear whether the entrainment‐
mixing process is predominantly homogeneous, inhomoge-
neous, or in between and what the controlling factors are and
how they interact. Such an incomplete understanding of
different types of entrainment‐mixing processes calls for
further state‐of‐the‐art observations, because distinguishing
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homogeneous/inhomogeneous entrainment‐mixing processes
is key to studying the effect of entrainment‐mixing process
on warm‐rain initiation and cloud‐climate feedback. For
example, two sensitivity studies using models have recently
demonstrated that assuming different types of entrainment‐
mixing processes (e.g., extreme homogeneous or inhomo-
geneous entrainment mixing) can significantly affect cloud
microphysical properties, cloud radiative properties, and
evaluation of aerosol indirect effects [Grabowski, 2006;
Chosson et al., 2007].
[4] Still less understood is the intimate connection among

microphysical, dynamical, and thermodynamic properties
associated with different entrainment‐mixing processes.
More and deeper observational analyses are clearly needed
to improve our understanding and quantification of the
microphysical‐dynamical‐thermodynamic connection, which
is necessary to improve parameterization of entrainment‐
mixing processes and their microphysical effects in GCMs,
beyond parameterization of the entrainment rate [Lock,
2001].
[5] In addition, most of the previous studies have been

concerned with maritime clouds and cumulus clouds; conti-
nental stratocumulus clouds are relatively underinvestigated.
The U. S. Department of Energy’s Atmospheric Radiation
Measurement (ARM) program conducted an Intensive
Observation Period (IOP) of cloud observations at the
Southern Great Plains (SGP) site during March 2000. The
data collected during this IOP provide a great opportunity to
investigate entrainment‐mixing processes occurring in mid-
latitude continental stratocumulus clouds. This study has
three primary objectives: (1) to examine turbulent entrain-
ment‐mixing processes occurring in the midlatitude conti-
nental stratocumulus clouds collected during this IOP in the
framework of the homogeneous/inhomogeneous model; (2)
to seek the connection among microphysical, dynamical, and
thermodynamic properties associated with entrainment‐
mixing processes; (3) to explore and use an integrative
approach that combines analyses of microphysical, dynami-
cal, and thermodynamic relationships.
[6] The rest of the paper is organized as follows. Section 2

briefly describes the IOP experiment, the key instruments on
board the Citation aircraft, and the data processing process.
Section 3 presents the main results, including the relationship
among microphysical properties, cloud dynamical structures,
and thermodynamic structures. Concluding remarks are pre-
sented in section 4.

2. Description of Cloud IOP and Data

[7] The cloud IOP was conducted by the ARM Research
Facility at the SGP site during 1–26 March 2000 and aimed
at documenting midlatitude cloud properties for evaluating
models and retrieval algorithms. Of particular relevance to
this work are the 12 flights taken with the Cessna Citation
research aircraft of the University of North Dakota. Cloud
droplet and drizzle size distributions were measured with
a Particle Measuring Systems (PMS) Forward Scattering
Spectrometer Probe (FSSP‐100) and an optical array probe
(1D‐C), respectively. The FSSP sizes and counts cloud
droplets in 15 bins, with bin centers from 5.3 to 59.8 mm in
diameter; the 1D‐C probe has 30 bins with bin centers from
24.1 to 600 mm in diameter. Measurements of both instru-

ments are corrected with standard procedures. Briefly, cor-
rections to particle concentrations from the FSSP are applied
to account for probe activity and coincidence (electronic
dead time) [Baumgardner et al., 1985] and for variations in
the effective beam diameter [Dye and Baumgardner, 1984].
Corrections to particle sizes to account for electronic
response time and beam inhomogeneity follow the method of
Baumgardner and Spowart [1990]. The sizing correction
scheme redistributes the counts, and the bin widths are
adjusted to account for ambiguities in the Mie scattering
curve. Particle concentrations and sizes from the 1D‐C are
corrected for aircraft speed and electronic delays after the
method by Baumgardner [1987]. The aircraft was also
mounted with a Cloud Particle Imager (CPI) manufactured
by the Stratton Park Engineering Company; images of cloud
particles collected with the CPI are used, together with air
temperature, to ascertain the clouds analyzed are liquid‐
water clouds. Air temperature, air pressure, and dew point
were measured with Rosemount model 102, Rosemount
model 1201F1, and EG&G model 137 probes, respectively.
Relative humidity was calculated based on the dew point, air
temperature, and air pressure. True air speed was measured
by Rosemount 1221F. The turbulent dissipation rate was
derived from the true airspeed using a structure function (see
Appendix A for details). Vertical wind speed was calculated
based on the wind equations described by Khelif et al. [1999]
with the data observed by Validyne P40D and Applanix
Position and Orientation System (POS). The 1 Hz data are
used in this study.
[8] This paper is mainly concerned with nondrizzling

clouds and nondrizzling flight horizontal legs in drizzling
clouds; thus the key microphysical properties used in this
study, including liquid water content (LWC), droplet num-
ber concentration (N), and volume‐mean radius (rv), are
calculated from the FSSP‐measured droplet size distribu-
tion. The 1D‐C measurements are mainly used for deter-
mining whether or not a flight leg was drizzling. A leg was
considered as drizzling if the 1D‐C probe showed the
existence of drizzle drops with diameters >50 mm and there
were drops of ∼50 mm diameter in the FSSP‐measured
droplet size distributions. Similarly, a cloud was considered
as drizzling if there was at least one drizzling leg. A cloud
record is defined by the criteria of N > 10 cm−3 and LWC >
0.001 g m−3 [Deng et al., 2009; Zhang et al., 2011]. Both
thresholds for N and LWC are introduced to eliminate the
cloud droplet size distributions that are probably composed
of large aerosols instead of cloud droplets.
[9] A total of 12 cases were measured during the cloud

IOP, including stratocumulus, altocumulus, and cirrus. This
paper focuses on five warm stratocumulus cases that either
had cloud top temperatures above 0°C or no ice crystals
based on the CPI particle images (these ice‐free clouds are
referred to as warm clouds throughout this paper). Among
these five cases, two cases (3, 19 March 2000) were non-
drizzling and the other three (17, 18, 21 March, 2000) were
drizzling. To minimize the effect of the collision and coa-
lescence process in drizzling cases, only nondrizzling flight
legs are examined in this study.
[10] A total of 16 nondrizzling horizontal flight legs that

satisfy these conditions are identified and analyzed using a
combined approach to be detailed later in section 3. To
ensure sufficient statistics, these selected flight legs had a
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horizontal length of at least 12 km and 15 cloud droplet size
distributions. Figure 1 summarizes these legs along with the
dominant entrainment‐mixing mechanisms. For conve-
nience, a leg number is designated for every flight leg of each
case, and different colors represent different entrainment‐
mixing mechanisms in this figure. The entrainment‐mixing
mechanisms shown here are based on the microphysical
analysis only (see section 3.1 for details).
[11] Also shown in Figure 1 are the cloud top and base

according to the ARM Active Remotely Sensed Cloud Loca-
tions (ARSCL) Value Added Product (VAP) as references
for judging the leg position in the corresponding clouds. It
is noteworthy that because of the different sampling areas of
cloud in the measurements of radar, ceilometer, and aircraft,
the radar‐measured cloud top and ceilometer‐derived base
might not well represent the cloud area where the aircraft
was penetrating, especially when the cloud was dissipating
and shallow, such as the 19 March 2000 case [Dong et al.,
2002], in which sometimes the cloud top was shown
incorrectly lower than the cloud base (Figure 1d). However,
the information on the cloud top and base still provided
valuable references for analysis.

3. Methodology and Results

3.1. Microphysical Results

3.1.1. Homogeneous/Inhomogeneous Model
[12] The basic understanding of the connection between

cloud microphysical relationships and different types of
entrainment‐mixing processes in the framework of the
homogeneous/inhomogeneous entrainment‐mixing model

has been largely built on the classical work presented by
Baker and Latham [1979] and Baker et al. [1980]. According
to this model, the microphysical relationship associated with
different entrainment‐mixing processes can be classified into
three major types, and is briefly discussed below.
[13] The first type is the homogeneous entrainment‐

mixing mechanism. Under this mechanism, all cloud droplets
are exposed to the same environmental conditions and
evaporate at the same time. Thus rv andN are anticipated to be
positively correlated. The extreme homogeneous scenario in
which N remains unchanged while droplets evaporate and
shrink has been often cited as a typical example of homoge-
neous mixing, especially in parameterization of entrainment‐
mixing processes for large‐scale models [Grabowski, 2006;
Chosson et al., 2007].
[14] The second type is the so‐called extreme inhomo-

geneous entrainment‐mixing mechanism. It proceeds in two
steps: All droplets surrounding the entrained dry‐air parcel
first evaporate to just saturate the parcel; and then mixing
between this parcel and the remaining part of cloud dilutes
the cloud. Under such conditions, rv changes slightly as N
decreases because of evaporation.
[15] The third type is a continuation of the extreme inho-

mogeneous mixing that can be described as follows. If the
diluted parcel after the extreme inhomogeneous entrainment‐
mixing process is lifted upward again, the big droplets in this
parcel are expected to grow faster than those in other undi-
luted parcels because of less competition for water vapor.
Under such conditions, rv is negatively correlated to N. To
distinguish this from the commonly cited extreme inhomo-
geneous entrainment mixing, the type that exhibits a negative

Figure 1. Temporal evolutions of aircraft height, cloud top and base in the five cases at Southern
Great Plains (SGP) site during the five cases: (a) 3 March 2000, (b) 17 March 2000, (c) 18 March
2000, (d) 19 March 2000, (e) 21 March 2000. The numbers in the figures are horizontal leg numbers,
and their different colors represent different mechanisms. Blue, extreme inhomogeneous entrainment‐
mixing mechanism; red, inhomogeneous entrainment mixing with subsequent ascent; black, homoge-
neous entrainment‐mixing mechanism.
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rv‐N correlation is herein termed as inhomogeneous entrain-
ment mixing with subsequent ascent.
3.1.2. Microphysical Analysis
[16] Based on the above qualitative analysis, the rv‐N

relationship is expected to have distinct characteristics for
different types of entrainment‐mixing processes. This unique
feature has been widely employed to identify entrainment‐
mixing mechanisms in numerous previous studies [e.g.,
Pawlowska et al., 2000; Burnet and Brenguier, 2007;
Lehmann et al., 2009] and is used in this paper. Another
reason for focusing on the rv‐N relationship is its close link to
the parameterization of effective radius and study of aerosol

indirect effects [Shao and Liu, 2006; Kim et al., 2008]. We
have analyzed the rv‐N relationships of all 16 nondrizzling
legs, and we discuss the main results below.
[17] The extreme inhomogeneous entrainment‐mixing

signature was found for 13 out of 16 flight legs observed
during this IOP. Figure 2 shows three representative exam-
ples. Figure 2a displays the result for Leg 2 of the 19 March
2000 case. According toDong et al. [2002], this cloud was at
its dissipating stage and the measurement was carried out
around the cloud top (see also Figure 1d). This cloud was
unique in that all seven legs exhibit similar features as
exemplified here. Second, two nondrizzling legs in the
drizzling clouds (Leg 1 of the 17 March 2000 case and Leg 1
of the 21 March 2000 case) were also mainly affected by
the extreme inhomogeneous entrainment‐mixing process;
Figure 2b shows the result for Leg 1 of the 17 March 2000
case as an example. As indicated in Figures 1b and 1e, these
legs were both sampled near the cloud tops. Previous
studies have also documented the occurrence of the extreme
inhomogeneous entrainment‐mixing mechanism near cloud
tops [Pawlowska et al., 2000; Burnet and Brenguier, 2007;
Lehmann et al., 2009], especially when the cloud was dis-
sipating [Lehmann et al., 2009]. It is intriguing to note that
the extreme inhomogeneous entrainment‐mixing mecha-
nism also occurred along Legs 2 and 3 in the middle level
of the 03 March 2000 case (e.g., Leg 3, Figure 2c).
[18] Two legs were found to be predominantly affected by

the inhomogeneous entrainment mixing with subsequent
ascent (Figure 3) in two different conditions: (1) Leg 4 was in
a nondrizzling cloud (the 3 March 2000 case) and (2) Leg 1
was a nondrizzling leg in a drizzling cloud (the 18 March
2000 case). What was particularly interesting was that the
two legs exhibited significant differences in their ranges of
N. The majority of data points along Leg 4 of the 3 March
2000 case had N larger than 100 cm−3 while the N varied
from ∼20 to 100 cm−3 along Leg 1 of the 18 March 2000
case. Inspection of Figures 1a and 1c indicates that the two
legs were both located in the middle of the clouds. Further-
more, such a scenario in which larger droplets are accom-
panied by smaller N was found in previous observations
[e.g., Siebert et al., 2006; Lehmann et al., 2009]. The
numerical simulations by Lasher‐Trapp et al. [2005] and
Krueger [2008] also showed that the ascending mixed par-
cels could produce larger droplets than during an adiabatic
ascent.
[19] Only one flight leg as a whole (Leg 2 of the 17 March

2000 case) exhibited some microphysical feature of the
homogeneous entrainment‐mixing process with a correla-
tion coefficient of 0.15 between N and rv (Figure 4, espe-
cially when droplet concentration <∼200 cm−3). This leg lay
in the lower part of the cloud, which seemed consistent with
previous studies that have suggested that homogeneous
mixing often occurs in less‐diluted regions such as a
growing core [Burnet and Brenguier, 2007; Lehmann et al.,
2009].
[20] It is worth mentioning that the emphasis of the above

analysis was on leg averages. In fact, for some legs, the
divisions between different types were not as sharp as
described in the qualitative classification, and different types
sometime coexisted along the same leg (more discussion on
this mixture behavior is deferred to section 3.2.3).

Figure 2. Relationship between the volume‐mean radius
(rv) and the cloud droplet number concentration (N) along
(a) Leg 2 of the 19 March 2000 case, (b) Leg 1 of the
17 March 2000 case, and (c) Leg 3 of the 03 March 2000
case, dominantly affected by the extreme inhomogeneous
entrainment‐mixing process.
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3.2. Dynamical Analysis and Transition Scale Number

3.2.1. Theoretical Formulation
[21] Except for the microphysical relationship between N

and rv, the partition between homogeneous and inhomoge-
neous entrainment‐mixing processes has been often based
on two characteristic time scales, evaporation time tevap and
turbulent mixing time tmix, since the pioneering work by
Baker and Latham [1979] and Baker et al. [1980]. The
evaporation time expresses the time needed for a population
of droplets with a mean radius rm to evaporate in a subsat-
urated environment and is given by

�evap ¼ � r2m
2As

; ð1Þ

where A is a function of air pressure and temperature and
s the supersaturation [e.g., Rogers and Yau, 1989] (see
Appendix B for details). The negative sign is introduced to
denote the fact that s is negative in a subsaturated environ-
ment. The turbulent mixing time represents the time needed
for complete homogenization of a volume of a linear size L
through the process of turbulent diffusion and is given by

�mix � L2

"

� �1=3

; ð2Þ

where " is the eddy dissipation rate of turbulent kinetic
energy [Baker et al., 1984; Burnet and Brenguier, 2007;
Wyngaard, 2010]. The occurrence of homogeneous or
inhomogeneous mixing can be discerned from the ratio of the
two characteristic time scales defined as the Damköhler
number (Da) or its reciprocal [Siebert et al., 2006; Burnet
and Brenguier, 2007; Jeffery, 2007; Andrejczuk et al., 2009]:

Da ¼ �mix

�evap
: ð3Þ

Despite its popularity, this approach suffers from a serious
shortcoming: The value of L used in the calculations of tmix

and Da is ambiguous [Lehmann et al., 2009]. Major progress
was achieved lately by Lehmann et al. [2009] to overcome
this difficulty by introducing the concept of transition length
(L*) as the value of L that corresponds to the unit Da. The
substitution of Da = 1 and equation (2) into equation (3)
leads to the expression for the transition length:

L* ¼ "1=2�
3=2
react; ð4Þ

where reaction time treact is defined as either the time when
the droplets have completely evaporated or the time at which
the relative humidity has reached 99.5% (s > −0.005). Note
that treact is used instead of tevap to relax the limited
assumption that the supersaturation s is a constant for the
calculation of tevap. See Appendix B for details about the
calculation of treact. Lehmann et al. [2009] argued that if L*
falls within the turbulent inertial subrange, after a blob of size
LE of subsaturated air is entrained into a cloud, all eddies of
size L in the range of L* < L < LE will experience inhomo-
geneous entrainment‐mixing processes, whereas eddies
smaller than L* will mix homogeneously.
[22] Following Lehmann et al. [2009] and recognizing

that the lower end of the turbulent inertial subrange is
represented by the Kolmogorov length scale h, here we
further introduce a new dimensionless number, called the
scale number (NL) and defined as the ratio of L* to h:

NL ¼ L*

�
; ð5Þ

Figure 4. Relationship between the volume‐mean radius
(rv) and the droplet number concentration (N) along Leg 2
of the 17 March 2000 case, dominantly affected by the
homogeneous entrainment‐mixing process.

Figure 3. Relationship between the volume‐mean radius
(rv) and the cloud droplet number concentration (N) along
(a) Leg 4 of the 3 March 2000 case, and (b) Leg 1 of the
18 March 2000 case, dominantly affected by the inhomoge-
neous entrainment‐mixing with subsequent ascent.
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where h is given by

� ¼ �3

"

� �1=4

; ð6Þ

and n is the kinematic viscosity [Wyngaard, 2010] (see
Appendix B for details).
[23] Similar to L*, NL is a dynamical measure of the

degree of the homogeneous or inhomogeneous entrainment‐
mixing process, but accounts for both L* and h: the larger
the NL, the stronger the homogenous entrainment‐mixing
process and the weaker the inhomogeneous entrainment‐
mixing process.
3.2.2. Leg‐Averaged Scale Number
[24] To examine the applicability of this idea and make

a connection to the microphysical results presented in
section 3.1, we have computed L*, h, and NL for all the legs.
In the calculation, the air with temperature and moisture in
the environment just above the cloud tops (Table 1) is
assumed to be entrained into the clouds. Basically, these
values are based on the vertical profiles of temperature,
relative humidity, and water vapor mixing ratio along the
first vertical penetrations of clouds at the beginning of
flights. A similar method was used by Lehmann et al.
[2009] in their cumulus study. If such a penetration is not

available, as, for example, in the 19 March 2000 case, a
penetration in the middle of the flight is used.
[25] Figure 5 shows the NL for all the legs, where the blue,

red, and black colors represent the extreme inhomogeneous
mixing, inhomogeneous mixing with subsequent ascent, and
homogeneous mixing as identified by the microphysical
analysis, respectively.
[26] The only leg (Leg 2 of the 17 March 2000 case)

dominated by the homogeneous entrainment‐mixing process
according to the microphysical analysis conspicuously had
the largest NL of 53.7, while other legs affected by the
inhomogeneous entrainment‐mixing process had smaller
NL. Lehmann et al. [2009] pointed out that the homogeneous
mixing process was more likely to occur in the vicinity of
the cloud core of cumulus, where vertical velocity, tem-
perature, ", N, and LWC were positively correlated, while
the inhomogeneous entrainment‐mixing mechanism domi-
nated in the more‐diluted cloud regions. The five cases
presented here did not have such cloud cores; positive
correlations among vertical velocity, temperature, ", N, and
LWC were not identified, implying that these clouds were
aged and not actively growing. However, the comparison
between Leg 2, affected by the homogeneous entrainment‐
mixing process in the 17 March 2000 case, and Leg 1,
dominated by the inhomogeneous entrainment‐mixing pro-
cess in the same case, could still provide some hints to further
examine the causes of the two mechanisms (Figure 6). The
reason for choosing Leg 1 of the 17 March 2000 case
representing the inhomogeneous entrainment‐mixing mech-
anism was that these two legs were in the same case and were
expected to have a similar environment. Thus, we can focus
on the effect of entrainment mixing on the microphysical
relationships to the greatest extent.
[27] It is evident that the vertical velocity was mainly

positive along Leg 2 but negative along Leg 1. Moreover,
the ", N, LWC, and NL were much larger along Leg 2 than
along Leg 1. Therefore, compared with Leg 1, Leg 2 was
closer to the “cloud core” with less dilution and Leg 1 had

Table 1. Air Temperature, Relative Humidity and Water Vapor
Mixing Ratio Above the Cloud Top in the Five Cases

Case Type
Temperature

(°C)

Relative
Humidity

(%)

Water Vapor
Mixing Ratio

(g kg−1)

3 March 2000 Non‐drizzling 0.5 60.8 2.9
17 March 2000 Drizzling −5.0 61.6 2.5
18 March 2000 Drizzling −3.1 38.1 1.7
19 March 2000 Non‐drizzling 2.3 42.4 2.2
21 March 2000 Drizzling −0.9 26.7 1.5

Figure 5. Bar plot for the average scale number (NL) along different legs in the five cases.
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experienced extensive dilution. This was consistent with the
aforementioned conclusion given by Lehmann et al. [2009].
In addition, if a blob with size LE was assumed to be
entrained from above the cloud top and moved downward,
the parcel would be stretched into smaller blobs. The more
the blob moved downward, the smaller the size that would
be obtained [Krueger, 1993]. The height of Leg 2 was lower
than that of Leg 1; therefore Leg 2 could have smaller blobs,
increasing the probability of their sizes being located in the
range from h to L*. This could be another reason for the
homogeneous entrainment‐mixing process along Leg 2.
[28] Except for the two legs in the 17 March 2000 case,

which had the largest and smallest NL (Figure 5), the cor-
respondence between the analyses of microphysical rela-
tionship and scale number was not that obvious in their
relations to entrainment‐mixing types along the legs with
intermediate values of NL; a careful comparison of the
results for the two legs dominantly affected by the inho-
mogeneous mixing with subsequent ascent to other legs
suggests that these two legs shared similar scale numbers

with some other legs affected by the extreme inhomoge-
neous entrainment‐mixing mechanism. Although the sam-
ples here are too limited to be conclusive, this phenomenon
should be emphasized and warrants substantiation. The
reason for such a lack of unique one‐to‐one corre-
spondences between scale number and microphysical rela-
tionships could be that dynamical analysis through scale
number here or Damköhler number [Siebert et al., 2006;
Burnet and Brenguier, 2007; Jeffery, 2007; Andrejczuk et al.,
2009] or transition length [Lehmann et al., 2009] in previous
studies can distinguish homogeneous and inhomogeneous
entrainment‐mixing processes, but cannot further distinguish
the two types of inhomogeneous mixing processes: extreme
scenario and inhomogeneous mixing with subsequent ascent.
Thus such a lack of unique one‐to‐one correspondences
between microphysical and dynamical properties highlights
the importance of combined microphysical and dynamical
analyses in the investigation of turbulent entrainment‐mixing
processes.

Figure 6. (a) Temporal variations of vertical velocity (w), (b) dissipation rate ("), (c) number concentra-
tion (N), (d) liquid‐water content (LWC), (e) scale number (NL) along Leg 1 and Leg 2 of the 17 March
2000 Case. The dots represent the 1 Hz data.

LU ET AL.: TURBULENT ENTRAINMENT MIXING D20207D20207

7 of 12



3.2.3. A Probabilistic View of the Scale Number
[29] Lehmann et al. [2009] obtained a transition scale L*

that starts to favor homogeneous mixing at approximately
10 cm, which is close to leg‐averaged value L* = 7.4 cm for
Leg 2 of the 17 March 2000 case; L* of ∼10 cm means NL of
∼50 for a typical value of h ∼2 mm. Except for the leg‐
averaged NL, the further examination of spatial distribution
of NL is necessary because NL along one leg is not uniform.
The spatial distribution of NL along one leg is expected to be
responsible for the simultaneous occurrence of different
types of entrainment‐mixing mechanisms, as mentioned in
section 3.1. For example, Figure 7 shows the probability
density function of NL (1 Hz) along Leg 3 of the 3 March
2000 case; it is clear that most NL values were in the range
of 5–20, corresponding to the dominance of the extreme
inhomogeneous entrainment‐mixing mechanism; however,
there were still some values larger than 50 or even 150,
giving a sign of the occurrence of homogeneous entrain-
ment‐mixing process, which was supported by the weak
positive correlation between rv and N for N < ∼100 m along
this leg (Figure 2c). Similarly, for Leg 2 of the 17 March
2000 case, although it was dominantly affected by the
homogeneous entrainment‐mixing mechanism, the negative
correlation of rv versus N for N > ∼200 cm−3 (Figure 4)
showed the occurrence of the inhomogeneous entrainment‐
mixing process, which could be related to the existence of
small NL (Figure 8). The wider distribution of NL from
smaller to larger than 50 was a common phenomenon; only
Leg 1 in the 17 March 2000 case had maximum NL smaller
than 50. The wider distribution of NL could be further
augmented by Figure 9 in that the standard deviation of NL

generally increased with its mean for all the legs in general.
Therefore, even a dominance of one specific entrainment‐
mixing mechanism could not completely rule out the
occurrence of other mechanisms.

3.3. Thermodynamic Structure

[30] To examine the relevance of cloud thermodynamic
structure to entrainment‐mixing mechanisms, this section
examines the relationship of air temperature to N. The
results show that all 16 legs exhibited more or less negative
correlations between the temperature and N, with different
magnitudes of correlation and slopes, as exemplified in
Figure 10 for Leg 4 of the 3 March 2000 case, Legs 1 and 2

of the 17 March 2000 case, and Leg 2 of the 19 March 2000
case. At first glance, this negatively correlated relationship
seemed to contradict the evaporation of droplets associated
with entrainment‐mixing processes that likely lowered both
the temperature and N [e.g., Lewellen and Lewellen, 1998;
Yamaguchi and Randall, 2008]. On the other hand, Haman
et al. [2007] showed that filaments of dry and cloudy air of
sizes smaller than 10 cm were ubiquitous in clouds, and the
inevitable averaging of different filaments during the sam-
pling process could cause such a negative correlation. For
this study, the 1 Hz sampling interval corresponded to a
spatial distance of about 100 m, and thus any measurement
was an average that lumped together unsaturated droplet‐
free air and cloudy air of different filaments of sizes smaller
than 100 m [Wang et al., 2009]. The effect of the filament
structure on the relationship between temperature and N is
schematically illustrated by Figure 11. Because of evapo-
rative cooling, uniform filaments containing liquid water
after mixing are cooler than unmixed clouds (see Figure 14
of Haman et al. [2007] for details); therefore, the tempera-
ture in cloudy Filaments A and B could be lower, but the

Figure 7. Probability density function of 1 Hz scale num-
ber (NL) along Leg 3 of the 3 March 2000 case.

Figure 8. Same as Figure 7 but for Leg 2 of the 17 March
2000 case.

Figure 9. Relationship between the leg mean scale number
NL and the corresponding standard deviation.
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warm and dry cloud‐free air in the mixture could contribute
to the higher average temperature and lower N.
[31] To some degree, the filament structures could also

contribute to the observed small variation in rv but large
variation in N, which is identified as the microphysical sig-
nature of the extreme inhomogeneous entrainment‐mixing
mechanism [Baker et al., 1984; Burnet and Brenguier, 2007;
Haman et al., 2007; Andrejczuk et al., 2009]. However, by
comparing the results derived from model simulations and
observations, Burnet and Brenguier [2007] also pointed out
that proper physical processes could lead to the extreme
inhomogeneous mixing as well. Our analysis of the transition
scale number in the last subsection affirms their finding. This
relevance of microphysical relationship to thermodynamic
structure further highlights the need for an approach that
combines analyses of microphysical, dynamical, and ther-
modynamic properties.

4. Concluding Remarks

[32] By use of a combined analysis of microphysical
relationship and dynamical and thermodynamic structures,
different types of entrainment‐mixing mechanisms are
examined for the microphysical, dynamical, and thermody-
namic signatures. Data on 16 nondrizzling horizontal flight
legs in five warm continental stratocumulus clouds collected
during the March 2000 cloud IOP conducted at the SGP site
are analyzed.
[33] The analysis of the microphysical relationship shows

that, on average, the extreme inhomogeneous entrainment‐

mixing mechanism with the relationship of a constant
volume‐mean radius versus varying droplet concentrations
was dominant, and 13 out of 16 flight legs were mainly
influenced by this type. Although most legs thus affected
were near cloud tops, as reported in many previous studies,
two legs in the middle level of a cloud were found to exhibit
the microphysical signature of this type. This result suggests

Figure 10. Relationships between the droplet number concentration (N) and air temperature along
(a) Leg 4 of the 3 March 2000 case, (b) Leg 1 of the 17 March 2000 case, (c) Leg 2 of the 17 March 2000
case, and (d) Leg 2 of the 19 March 2000 case.

Figure 11. Schematic illustration of the filament structure
of a sample as collected by the instrumented aircraft. The
circles in Filaments A and B represent cloud droplets.
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that the entrained dry air at the cloud top penetrated deeper
(200–300 m) into clouds under some conditions and resulted
in extreme inhomogeneous entrainment mixing. Two legs
were found to exhibit a negative correlation between volume‐
mean radius and droplet concentration, a microphysical
signature of inhomogeneous entrainment mixing with sub-
sequent ascent. Only one leg was weakly influenced by the
homogeneous entrainment‐mixing mechanism with a posi-
tive correlation between volume‐mean radius and droplet
concentration.
[34] A new dimensionless number called the scale number

is introduced to characterize the dynamical properties of
different types of entrainment‐mixing processes. It is argued
from theoretical analysis of major characteristic scales
(turbulent mixing scale, droplet reaction scale, and the
Kolmogorov microscopic scale) that the scale number can
be utilized as a dynamical measure of the chance for the
occurrence of homogeneous entrainment‐mixing process:
The larger the scale number, the higher the chance for
homogeneous mixing to occur. Similarly, a smaller scale
number means a higher probability of the inhomogeneous
entrainment‐mixing mechanism. Observational analysis of
scale number for all the flight legs reveals three points. First,
the data support our theoretical projection that among all the
legs examined, the leg with the microphysical signature of
homogeneous mixing had the largest scale number, and the
least scale number tended to be associated with the leg
dominantly affected by the extreme inhomogeneous mixing.
Second, there was no one‐to‐one correspondence between
the microphysical signature and the scale number for those
legs with intermediate values of the scale number; a similar
scale might correspond to microphysical signatures of either
the extreme inhomogeneous entrainment mixing or the
inhomogeneous entrainment mixing with subsequent ascent.
Finally, a more complete characterization of entrainment‐
mixing processes demands a probabilistic description, which
further shows that different entrainment‐mixing mechan-
isms tended to occur simultaneously and one dominant
mechanism could not rule out the occurrence of the others.
The last two points highlight the importance of integrating
the microphysical and dynamical analyses in discerning
different types of entrainment‐mixing processes.
[35] Thermodynamic analysis indicates the omnipresence

of a negatively correlated relationship between air temper-
ature and droplet number concentration along all legs in the
five cases. It is argued that this phenomenon confirmed
indirectly what was hypothesized by Burnet and Brenguier
[2007]: A cloud (leg) consists of various cloudy and drop-
let‐free filaments; a sample collected over a 1 s time inter-
val, which spans about 100 m in space, represents an
average of many cloudy and droplet‐free filaments; and the
sampling average of different filaments tends to produce a
large variation of droplet concentrations without significant
change of the droplet size during sampling, and thus is at
least partly responsible for the dominance of the extreme
scenario.
[36] Altogether, the results derived from our combined

analysis suggest that although each analysis is individually
useful for studying entrainment‐mixing processes, a com-
plete characterization often requires integrative application
of the three approaches. Furthermore, the combined
approach sheds new light on the microphysical‐dynamical‐

thermodynamic connection, which is essential for develop-
ing microphysical parameterization in relation to different
entrainment‐mixing processes for use in large‐scale models.
[37] Several points are noteworthy. First, this paper

examines entrainment‐mixing processes in the framework of
the homogeneous/inhomogeneous mixing model pioneered
by Baker and her coworkers, without invoking other models
such as the entity‐type entrainment mixing [Telford and
Chai, 1980; Telford, 1996] and internal mixing [Hudson
and Yum, 1997]. Related subjects also include clustering
[Kostinski and Shaw, 2001], turbulence fluctuations [Liu
et al., 2002b], and cloud inhomogeneity [Davis et al.,
1999]. Second, our results suggest that the common classi-
fication of three qualitative types is an oversimplification; a
quantitative continuum for each qualitative type likely
exists. However, because of limited data sets, the results
cannot be considered conclusive; more and further investi-
gations are necessary to substantiate our findings. For
example, to further explore the behavior in clouds, espe-
cially in the filament cloud area, high‐resolution measure-
ments are necessary [Malinowski and Pawlowska, 1989;
Grabowski and Pawlowska, 1993; Haman et al., 2007].
Third, albeit in its infancy, the necessity of seeking and
quantifying the connection among microphysics, dynamics,
and thermodynamics regarding entrainment‐mixing pro-
cesses cannot be overemphasized; both theoretical analyses
and high‐resolution numerical simulations of the scale num-
ber are under way, seeking physics‐based parameterizations
of entrainment‐mixing processes and their microphysical
and radiative effects in large‐scale models.

Appendix A: Calculation of Turbulent Dissipation
Rate

[38] Turbulent dissipation rate is calculated from mea-
surements of an aircraft’s true airspeed U [Poellot and
Grainger, 1991]:

" ¼ D

C

� �3=2 1

�x
; ðA1Þ

where C is Kolmogorov’s constant (1.77), dx is the lag
distance between samples, and D is a structure function:

D ¼ U xð Þ � U xþ �xð Þð Þ2: ðA2Þ

U was measured at a frequency of 24 Hz; a moving average
of five samples was performed to eliminate the transducer
noise. The 24 Hz structure function is calculated by taking
the square of the difference of the smoothed U with a lag of
12 samples (0.5 s); the lag distance (dx) is calculated by
multiplying the average U over a 0.5 s period by the time
increment (0.5 s), which is around 50 m. The 24 Hz dissi-
pation rate is calculated with equation (A1). In this paper,
the 24 Hz values are further averaged to 1 Hz to reduce
noise and to be consistent with size distribution measure-
ments. Because it provides much needed high‐frequency
data on the dissipate rate, a similar method has been widely
used in previous studies [e.g., Labitt, 1981; Paluch and
Baumgardner, 1989; Gultepe and Starr, 1995; Meischner
et al., 2001; Cho et al., 2003].
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[39] It is noteworthy that equation (A1) strictly holds when
the turbulence is isotropic and the lag distance is within the
inertial subrange. A deviation from these assumptions can
result in errors in thus calculated dissipation rates.Meischner
et al. [2001] examined the dependence of dissipation rate on
lag distance with a similar calculation method of dissipation
rate (structure functions of longitudinal and normal compo-
nents of true airspeed instead of true airspeed). Cho et al.
[2003] also discussed the dependence of dissipation rate on
lag distance.

Appendix B: Calculation of Scale Number (NL)

[40] The scale number (NL) is defined as the ratio of L* to
the Kolmogorov microscale h:

NL ¼ L*=�: ðB1Þ

The h is given by

� ¼ �3

"

� �1=4

; ðB2Þ

where n is the kinematic viscosity [Wyngaard, 2010].
[41] The transition length (L*) is calculated using the

same approach presented by Lehmann et al. [2009]. Briefly,
L* is given by

L* ¼ "1=2�
3=2
react: ðB3Þ

The reaction time treact is calculated through the combina-
tion of equations (B4) and (B5) when a population of dro-
plets completely evaporate (mean radius rm = 0) in a
subsaturated environment or relative humidity reaches
99.5% (supersaturation s > −0.005):

drm
dt

¼ A
s

rm
A ¼ 1

Lh
RvT

� 1

� �
Lh�L
KT

þ �LRvT

Des Tð Þ
� � ; ðB4Þ

ds

dt
¼ �Brms B ¼ 4�N�L

R′T

�es Tð Þ þ
"L2h
pTcp

� �

� 1
Lh
RvT

� 1

� �
Lh�L
KT

þ �LRvT

Des Tð Þ
� � ; ðB5Þ

where Lh is latent heat, Rv is individual gas constant for
water vapor, T is air temperature, rL is density of liquid
water, K is coefficient of thermal conductivity of air, D is
coefficient of diffusion of water vapor in air, es (T) is sat-
uration vapor pressure over a plane water surface at tem-
perature T, N is number concentration of droplets, R′ is
individual gas constant for dry air, x = R′/Rv, p is air pres-
sure, and cp is specific heat with pressure held constant.
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